skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Striolo, Alberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hypothesis: Additives like Tetrahydrofuran (THF) and Sodium Dodecylsulfate (SDS) improve Carbon Dioxide (CO2) hydrates thermal stability and growth rate when used separately. It has been hypothesised that combining them could improve the kinetics of growth and the thermodynamic stability of CO2 hydrates. Simulations and Experiments: We exploit atomistic molecular dynamics simulations to investigate the combined impact of THF and SDS under different temperatures and concentrations. The simulation insights are verified experimentally using pendant drop tensiometry conducted at ambient pressures and high-pressure differential scanning calorimetry. Findings: Our simulations revealed that the combination of both additives is synergistic at low temperatures but antagonistic at temperatures above 274.1 K due to the aggregation of SDS molecules induced by THF molecules. These aggregates effectively remove THF and CO2 from the hydrate-liquid interface, thereby reducing the driving force for hydrates growth. Experiments revealed that the critical micelle concentration of SDS in water decreases by 20% upon the addition of THF. Further experiments in the presence of THF showed that only small amounts of SDS are sufficient to increase the CO2 storage efficiency by over 40% compared to results obtained without promoters. Overall, our results provide microscopic insights into the mechanisms of THF and SDS promoters on CO2 hydrates, useful for determining the optimal conditions for hydrate growth. 
    more » « less
  2. Clathrate hydrates form and grow at interfaces. Understanding the relevant molecular processes is crucial for developing hydrate-based technologies. Many computational studies focus on hydrate growth within the aqueous phase using the ‘direct coexistence method’, which is limited in its ability to investigate hydrate film growth at hydrocarbon-water interfaces. To overcome this shortcoming, a new simulation setup is presented here, which allows us to study the growth of a methane hydrate nucleus in a system where oil–water, hydrate-water, and hydrate-oil interfaces are all simultaneously present, thereby mimicking experimental setups. Using this setup, hydrate growth is studied here under the influence of two additives, a polyvinylcaprolactam oligomer and sodium dodecyl sulfate, at varying concentrations. Our results confirm that hydrate films grow along the oil–water interface, in general agreement with visual experimental observations; growth, albeit slower, also occurs at the hydrate-water interface, the interface most often interrogated via simulations. The results obtained demonstrate that the additives present within curved interfaces control the solubility of methane in the aqueous phase, which correlates with hydrate growth rate. Building on our simulation insights, we suggest that by combining data for the potential of mean force profile for methane transport across the oil–water interface and for the average free energy required to perturb a flat interface, it is possible to predict the performance of additives used to control hydrate growth. These insights could be helpful to achieve optimal methane storage in hydrates, one of many applications which are attracting significant fundamental and applied interests. 
    more » « less